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PBPK/PD model of the glucose-insulin metabolism
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PBPK models describe the mechanisms underlying the
absorption, distribution, metabolism and excretion
(ADME) of a substance within the body at an in-depth
level of detail.
PBPK models are based to a large extend on prior
information regarding an organism’s anatomy and
physiology. Most model parameters are either taken from
collections of anatomical and physiological data or are
calculated from drug-dependent properties. Based on
such basic physicochemical parameters of a substance,
generic PK prediction models are automatically
parameterized. These models can then be used to
simulate drug concentration profiles in various organs and
tissues (Fig. 1) [2-4] .
PBPK models for glucose, insulin and glucagon were
developed using the software tools PK-Sim® and MoBi®.
For insulin and glucagon, the exchange across capillary
walls is described by the two pore theory, assuming
convection and diffusion through two types of pores [5].
For insulin only, saturating receptor-based trans-
endothelial transport is taken into account [6,7]. Insulin
crosses the endothelium via transcytosis. From the
interstitial space, insulin and glucagon are transported
back to circulation by lymph flow (Fig. 2).

For future applications, the coupled glucoregulatory PBPK/PD model will be used as a model kernel
for automated insulin delivery, i.e. blood glucose control. To accommodate for the nonlinearities of the
model kernel and the physiological/pharmacological lag-times of insulin absorption and action, a
constrained and robust nonlinear model predictive control routine (MPC) [17], state of the art in blood
glucose control [11,18], was chosen to derive the optimal insulin dose. The workflow setting is
depicted in Figure 5.

Motivation

A coupled PBPK/PD model was developed to describe the distribution and interaction of glucose,
insulin and glucagon in individual patients. Mechanistic models of both insulin receptor dynamics
[8,9] and subcutaneous insulin absorption [10] were integrated for dynamic representations of long-
and short-term (stationary and dynamic) changes in insulin action and to accommodate for the
application of all market relevant insulin derivatives (Fig. 3).

Automated glucose control (AGC), even after decades of research, has not yet reached a clinical
stage [1]. Major hurdles are the inter- and intra-individual variability of glucose dynamics, the uptake,
kinetics, and response of insulin, and related pharmacological lag-times. The explicit distinction
between substance and patient properties within physiology-based pharmacokinetic/
pharmacodynamic (PBPK/PD) models allows the use of prior knowledge, e.g. organ volumes and
blood flow rates, for their individual pre-parameterization. Together with added mechanistic detail, the
approach holds promise in alleviating remaining challenges in AGC.

Figure 3: Insulin action and
subcutaneous absorption
mechanistics. A) Comparison
of the insulin receptor model
from [8] which was implemented
(full colours, dotted arrows) with
[9] (opaque, solid arrows). B)
Mechanistics of subcutaneous
absorption of dimeric/
monomeric insulin (D) and its
transition into hexameric (H)
and microprecipitated (M)
structures as adapted from [10].

Figure 1: PBPK model structure
implemented in PK-Sim ®. The basic model
structure can be extended by additional
processes such as active transporters or
enzyme-mediated metabolisation [2].

Figure 4: Comparison of
predicted time concen-
tration curves. Compared
models are the PBPK/PD
model and the compartmental
model developed by Hovorka
et al. [11,12] which was used
for model predictive control in
the clinical study from which
the data was obtained
(excerpts in [13]). Only one
representative individual
(Subj. 2) is shown. A)
Exemplary prediction of
glucose concentration of visit
1. The subject was fitted on
data from visit 2. B)&C)
Clarke’s Error Grid Analysis of
the predicted blood glucose
time concentration curves from
A). Most high-false predictions
occur during a meal. The
compartmental model was
parameterized to our best
knowledge.

Figure 6: Evaluation of the blood glucose control concept us ing MPC. The chosen blood glucose concentration
target value for control is 105 mg/dl. A) Evaluation of a “what-if” scenario. Blood glucose is predicted based on the
original protocol of the clinical trial. In parallel, hypothetical insulin dosing suggestions are calculated at each time-
step by the controller, but are not applied to the process, and therefore repeatedly high doses are recommended.
This allows a qualitative comparison of the controller output under similar conditions (predictive error and glucose
levels) B) Evaluation of an in-silico control run. Only carbohydrates (meals and IV / oral glucose) are administered
based on the original protocol of the clinical trial. Information on carbohydrate intake is passed to the controller upon
start of intake. The optimal insulin dose is calculated by the controller and applied to the process.

Figure 2: Schematic of
trans-endothelial insulin
transport. A) Two pore
transport by convection and
diffusion. B) Saturatable
receptor-based transendo-
thelial transport. Bound to its
receptor and internalized,
insulin is carried to interstitial
space. Insulin and glucagon
are transported back to
circulation by lymph flow

Figure 5: Schematic of the
workflow during continuous
closed-loop glucose control.
The PBPK/PD model kernel is
initialized with the patients data
(physiological parameters, e.g.
weight, height, gender). Blood
glucose measurements are taken
frequently, stored and the most
recent measurements are
delivered to the controller. The
process works on two time-frames:
the online calculation of the
optimal insulin dose (“control input”
for closed-loop glucose control)
based on recent glucose
measurements on a short
timeframe, and the offline “model
adaptation” based on the full
measurement data history on an
extended time-frame.

The model was parameterized using a variety of literature data [14,15,16] as well as an unpublished
dataset from a clinical trial for closed-loop glucose control evaluation with subjects with type 1
diabetes at the Medical University of Graz. The coupled model is able to describe different standard
scenarios including clamp studies, tolerance tests as well as complete clinical trials with patients with
type 1 diabetes using one time-invariant parameter set, i.e. without continuous adaptations to intra-
patient variability (Fig. 4).

Overall the results promise that PBPK/PD models offer a more predictive approach than simpler
compartmental models by mechanistically capturing process variability. In a next step, the meal
absorption process will be improved, taking into account the nutritional composition of a meal.
Currently, the effect of exercise on liver and muscle glucose metabolism is under investigation. All
this should allow for a better control performance of insulin delivery as will be further investigated in a
clinical setting.

This work was performed in the framework of FP7 Integrated Project Reaction (Remote Accessibility
to Diabetes Management and Therapy in Operational Healthcare Networks) partially funded by the
European Commission under Grant Agreement 248590.
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A number of restrictions have been imposed to increase the robustness and safety of the control
algorithm. The maximum insulin Infusion rate is constrained based on a threshold calculated from the
saturation of effect of on-board insulin in hepatic and peripheral tissue. Thus, relative insulin
Sensitivity of the subject can be accounted for. This was combined with a state-feedback controller
for error correction to account for prediction errors. Overall, the evaluated control concept indicates
the applicability for glycaemic control (Fig. 6)
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