Dementia Ambient Care: Multi-Sensing Monitoring for Intelligent Remote Management and Decision Support

Alexia Briassouli
CERTH – ITI
Informatics & Telematics Institute
Introduction

- Instances of dementia increasing worldwide
 - By 2060 the people aged 80 and above will triple
 - Care ratio is decreasing rapidly as worldwide population increases

 - WHO: currently 35.6 million people have dementia
 - Every 20 years people with dementia double

- People cannot live independently
 - Hospitalization, nursing homes expensive for healthcare systems, individuals and their families
 - People prefer to stay at home, sense of independence, safety
Motivation

- **Social impact:**
 - PwD require 10 – 24 hr care per day
 - In S. Europe care is often provided by family members
 - PwD, family members cease to be active members of society/workforce

- **Financial impact**
 - Very expensive for families, healthcare systems
 - Aging workforce already a serious problem, fewer able people

- **Current Clinical approach:**
 - Clinical workflow mostly questionnaire based
 - Medication not effective: from 2003 – 2011 no medications approved
 - Johnson & Johnson, Pfizer and Eli Lilly studies of 5 years with 2 medications and 2400 patients, cost of 270.000.000 $: NO RESULTS
Motivation

- Technological solutions for Ambient Assisted Living:
 - Enhance clinical workflow to provide clinicians with continuous, comprehensive information of PwD, their condition and its progression
 - Provide PwD a sense of safety, increased independence
 - Relieve informal carers of financial, work, psychological burden

- First AAL solutions in the market rely on
 - Pressure, contact, motion sensors, not so much A/V

- Dem@Care:
 - Multimodal comprehensive monitoring for continuous, comprehensive lifestyle and behaviour profiling
 - Personalized adaptive feedback and intelligent decision support
 - Two closed loops: for PwD and Carers
Overview
Multimodal sensing

- **Wearable sensors:**
 - Physiological: WIMU, DTI – 2
 - Life-logging sensors: SenseCam
 - Audiovisual: wearable microphone, GoPro camera

- **Ambient sensors:**
 - Gear 4 Sleep Clock
 - Static camera: Sony Kinect, ASUS RGB-D
Physiological sensing – lifelogging

- Physiological sensing:
 - Objective, comprehensive picture of health: sleep quality, anxiety etc
 - Comorbidities often present with dementia
 - Rapid response in case of emergency (e.g. a fall)
 - Increased sense of safety and security for PwD and carers

- Life – logging:
 - Provides comprehensive objective picture of the person’s day
 - Very helpful for reminiscence therapy, especially visual diaries
Audio sensing

- Audio recordings at the Greek Association for Alzheimer's Disease and Related Disorders (GAADRD)
Audio sensing

- Audio testing at GAADRD
 - Tested 90 volunteers aged 65 and above
 - Healthy, MCI, early AD
 - Both genders

- Tests for memory, vocal abilities under cognitive load
 - 83.3% correct detection of the person’s condition
 - Motivation for further studies with larger populations for even higher detection rates of the person’s condition
Visual sensing

- Static RGB – D camera:
 - Person, posture localization in pre-defined areas of a room
 - Smoothed tracking, re-identification of person (e.g. after occlusion)
 - 3D geometric and semantic information, event models
 - High recognition rates for ADLs
Visual sensing

- **Wearable GoPro camera:**
 - Saliency map extraction to improve object recognition
Visual sensing

- Static RGB camera:
 - Dense multi-scale sampling in Motion Boundary Activity Areas (MBAAs),
 - Tracking, extraction of HOGs, HOFs.
 - Statistical sequential change detection (SSCD) on HOFs
 - BoW - SVM framework with SoA results
High-Level Behaviour Interpretation & Assessment

Monitoring & analysis

Low-level information

Assessed information

High-level interpretation

Physiological information

Lifestyle information

Voice-based information

Activity information

Profile learning algorithms

Clinical Knowledge

Domain Knowledge

Profile Knowledge

Semantic integration algorithms

Knowledge enrichment algorithms

Semantic fusion algorithms

High-level information on PwD behaviour & state
High-Level Behaviour Interpretation & Assessment

- Semantic integration of the captured low-level information and understanding of the situation (context) and behaviour of the patient
 - inference of complex activities/situations, clinically relevant situations, problems & abnormal situations, possible contributing factors, etc.
 - daily/weekly/monthly summaries for clinical follow up

- PwD behaviour profile learning & knowledge enrichment for tailored assessment
 - behaviour profiling (trends, habits & routines)
 - activity/behaviour patterns discovery & update
 - refine & enrich background knowledge (e.g. clinical assessment rules)
High-Level Behaviour Interpretation & Assessment

- Hybrid interpretation framework
 - enhance ontology expressivity with rule formalisms

- OWL 2 ontologies
 - formal modelling of sensors (cameras, microphones, etc), physiological & lifestyle observations, location & object information, voice-based indicators, atomic/complex activities, clinical problems, etc.

- SPARQL rules
 - temporal structure and semantics of complex activity patterns
 - abnormal behaviours recognition
Benchmark ADL datasets

- KTH, Weizmann: very popular, simple, not ADLs
Benchmark ADL datasets

- University of Rochester Activities of Daily Living (URADL)
 - 12 actors behind a counter, no significant anthropometric variations
 - Constrained environment
 - Useful for quick comparisons
Benchmark ADL datasets

- KIT Robo – Kitchen Dataset
 - More realistic, more freedom of movement
 - 17 actors, 14 activities (more anthropometric variations)
 - Counter Top, Room Setup scenarios
Dem@Care ADL datasets

- Recorded at GAADRD, two datasets
- Realistic room setup for common ADLs
- Anthropometric variations:
 - Elderly participants over 65 yrs old
 - Both genders
 - With dementia (MCI to AD), healthy volunteers
 - 32 actors in the first, 25 in the second dataset
- Informed consent of use in Dem@Care

- Multi – sensor recordings:
 - Physiological: WIMU, DTI – 2
 - Audio, wearable video, static video
Dem@Care ADL datasets
Feedback to Pwd

- Very simple, discreet feedback to PwD
- Intuitive, enabling
Feedback to Carers

- Very detailed, continuous, focus on problems, causes
- 5 target areas: sleep, exercise, sociability, mood, eating
Pilot Deployments

• Three types of pilots in three countries:
 • lab, nursing home, home, France, Ireland, Sweden.

• Iterative, modular depending on the environment

• Dem@Lab:
 • In a controlled environment for clinicians
 • More precise diagnosis

• Dem@NursingHome:
 • strong focus on professional carers
 • Monitoring, alarms

• Dem@Home:
 • monitoring the daily life of PwD
 • for quality of life, respite
Conclusions – challenges

• Promising enabling technology for PwD and carers
• Numerous discreet multi-sensing solutions available
• PwD eager to participate and use such solutions

Challenges:
• Difficult to integrate multiple sensing technologies
• Recruiting significant numbers of users at–home
• Familiarity of users with technologies
• Technological advances